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Abstract

Solid-state drives (SSDs) have recently become a common storage component in computer

systems, and they are fueled by continued bit cost reductions achieved with smaller feature

sizes and multiple-level cell technologies. However, as the flash memory stores more bits per

cell, the performance and reliability of the flash memory degrade substantially. To solve this

problem, a fast non-volatile memory (NVM-)based cache has been employed within SSDs to

reduce the long latency required to write data. Absorbing small writes in a fast NVM cache

can also reduce the number of flash memory erase operations. To maximize the benefits of

an NVM cache, it is important to increase the NVM cache utilization. In this paper, we propose

and study ProCache, a simple NVM cache management scheme, that makes cache-entrance

decisions based on random probability testing. Our scheme is motivated by the observation

that frequently written hot data will eventually enter the cache with a high probability, and that

infrequently accessed cold data will not enter the cache easily. Owing to its simplicity, Pro-

Cache is easy to implement at a substantially smaller cost than similar previously studied

techniques. We evaluate ProCache and conclude that it achieves comparable performance

compared to a more complex reference counter-based cache-management scheme.

1 Introduction

As circuit, manufacturing, and architectural innovations have led to attractive flash memory-

based solid-state disks (SSDs) from a performance-cost perspective, SSDs have become a com-

mon storage component in recent computer systems. In terms of cost, the main driver has

been smaller feature sizes and multiple-level cell technologies such as multi-level cells (MLCs)

and triple-level cells (TLCs).

However, as the flash memory stores more bits per cell, the performance and reliability of

the flash memory will be substantially lower than when storing fewer bits per cell. To address

this problem, a fast non-volatile memory (NVM-)based cache is widely used in modern SSDs.

Any kind of NVM devices can be used as a cache for SSDs. For example, phase-change

memory (PCM) or spin transfer torque magnetoresistive RAM (STT-MRAM) can be used as
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an NVM cache memory. Besides, some portions of a flash memory can be exploited as an

NVM cache by applying a special mode that reduces the number of bits stored per cell (e.g.,

TLC!MLC or MLC! SLC) [1].

An NVM cache can enhance the performance of SSDs by reducing the long latency to write

data. Furthermore, absorbing small writes with a fast NVM cache can also reduce the number

of flash memory erase operations by ensuring that garbage collection targets behaving more

uniformly, thereby prolonging the lifetime of the flash memory.

Regardless of what NVM device is used, developing an efficient cache-management scheme

is first essential for maximizing the NVM cache utilization. More frequently written data (i.e.,

hot data) should be classified and maintained in the cache with minimum space and computa-

tional overhead. Increasing the amount of hot data maintained within the cache leads to higher

performance and longer lifetime.

In order to maintain a higher hit ratio, and therefore maximize the cache utilization, vari-

ous mechanisms have been proposed for SSDs [2–9]. However, these schemes require either

high computational overhead or significant memory space, both of which significantly affect

the cost of the storage system and mitigate the effectiveness of the cache.

This paper investigates a data caching management scheme that exploits the characteristics

of a multiple-level cell flash memory. Based on the concept that frequently written hot data

will eventually enter the NVM cache with a high probability, and that infrequently used cold

data will not enter NVM cache easily without any extra work, we introduce probability based

decision making, which is called ProCache. ProCache is fairly simple and can be implemented

practically in a real system because it does not require any complex data structures or extensive

computations—just throw the dice!

We first show sensitivity analysis studies by performing simulations using the block traces

that are collected from real machines. Then, for comparison purpose, we implement an SSD

emulator including our proposed scheme along with relevant caching techniques. The results

obtained from various perspectives show that the proposed scheme efficiently maintains a

high hit ratio, and therefore enhances the overall performance over time and the storage ages.

Specifically, ProCache exhibits a performance of up to 16.2%, which is on average a 7.6% better

performance, and efficiently decreases the number of write operations by 19.3% and erase

operations by 14.0%.

The remainder of this paper is organized as follows. In Section 2, we discuss some related

work on this research. In Section 3, we explain the algorithm of the proposed scheme, while in

Section 4, we discuss the trace-driven analysis results. Then, in Section 5, we describe the

experimental setup and performance comparison results using an SSD emulator. Finally, we

conclude this paper in Section 6.

2 Background

In their early work of 1997, Chiang et al. proposed a flash memory server (FMS) in order to

reduce the number of erase operations in flash memory [2]. While FMSs exhibit good hot and

cold data classification performance, they require a large amount of memory space because

they must retain the last access time information of all LBAs. Unlike FMS, our probability-

based scheme does not require recording for each set of LBA information for hot/cold data

classification.

In a later work, Chiang et al. propose a new data reorganization method called dynamic

data clustering (DAC) [3]. DAC dynamically clusters data not only during segment cleaning,

but also during data updates. Our approach is fundamentally different from DAC, and does

not require any substantial data management operations.
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Chang et al. proposed a two-level LRU list scheme that employs a hot LBA list and a candi-

date list [4]. This two-level LRU scheme consumes less memory than FMS; however, it incurs

other problems. The performance of hot data identification is totally dependent on the sizes of

the lists. In other words, a small hot list can save memory space, but its prediction accuracy

degrades because hot data may be demoted to the candidate list or may even be evicted from

the candidate list. Moreover, this scheme incurs relatively high computing overheads to main-

tain LRU information. Our scheme does not maintain any LRU information or separate lists

to classify LBAs.

Chang considers the size of write requests in his hot/cold prediction scheme [5]. We find

that our approach and this size-based prediction approach are orthogonal. The write request

size may provide us with useful hints. For example, depending on the size, we may apply differ-

ent probability values when determining whether to insert the data into the cache.

There are schemes that track hot/cold data using compact tables. Hsieh et al. adopt K inde-

pendent hash functions to hash a given LBA into multiple entries of an M-entry hash table to

track the write count of the LBA [6]. Whenever a write is issued to the FTL, the corresponding

LBA is hashed simultaneously by the hash functions. Each corresponding table entry (counter)

to which the hash values point is incremented by one to reflect the fact that the LBA is written.

In order to track the temporal access pattern changes, the counters are decayed (by dividing

each entry by two) periodically. This approach can be fairly accurate, but is too expensive for

application in a practical system with a large capacity.

In another study, Park and Du adopt a set of V independent Bloom filters (BFs) and K inde-

pendent hash functions [7]. The weaknesses of the multiple hash function approach are: (1)

the memory requirements of tables increase as the capacity of the storage device increases, and

(2) computing K hash values and manipulating multiple tables may incur additional computa-

tional overhead.

Jung et al. propose a new hot/cold identification scheme that uses process identification

(PID) as a hot/cold indicator [8]. The weakness (or strength) of this scheme is that it utilizes

the information in the OS, which is generally not available inside a storage device. Our scheme

does not require the OS level information in the core algorithm.

Finally, Kim et al. argue that the hot data (e.g., file system metadata) may be effectively com-

pressed, while the cold data (e.g., multimedia data) may not be because they are already

encoded [9]. In itself, the merit of this scheme is limited owing to the required computation

overhead (unless compression is always performed for the purpose of saving storage capacity).

It is also unclear whether the proposed method is more accurate than other previous ideas. In

addition, our scheme uses the frequency of data accesses, which we believe is more general and

accurate.

3 Probability-based cache management

Fig 1 depicts the key components of the typical flash memory-based storage system, a host

interface, an SSD controller, an NVM cache, and a NAND flash memory array. To handle read

and write requests that are issued from an operating system via a host interface, an SSD con-

troller reads or writes data according to the request type.

We propose a probability-based cache-management algorithm, which we call ProCache.

ProCache is built on the simple probabilistic principle that repeated trials with a small proba-

bility of success will eventually result in success.

At the heart of our algorithm is the probability-based data classifier. In its baseline form,

the input to the classifier includes p(0< p� 1), which is the probability of declaring that the

current input is hot, and c, which is the cut-off size that determines whether a write is “too”
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large. One may expand the notion of p to a vector, p� = (p0, p1, p2,. . ., pN−1). In this case, given

the request size of C, pdlog2ce is selected for the test. In this way, one may eliminate the second

parameter c, or, depending on the choice of N, 2N−1 may become the new c.

The goal of designing a ProCache is to prove that the proposed probability-based NVM

cache management concept can be implemented practically in a real system. Upon receiving a

new write request, ProCache works like the Algorithm 1. As shown in the Algorithm 1, the

proposed ProCache is fairly simple and easy to implement.

Algorithm 1 ProCache algorithm

if the requestedblock is alreadyin the cachethen
It is hot data.Updatecorresponding NVM cache data.

else
if the requestsize� c then
It is cold data.Send it to the NAND arrayand invalidateany data in the
NVM cachethat overlapswith the request.

else
Generatea randomnumberr, 0� r� 1.
if r < p then
The write requestpassedthe probability test and is consideredhot.
Insertit to the cacheand invalidateany data in the cache that
overlapswith the new data.

else
The data is cold,and send it to the NAND arrayand invalidateany
data in the NVM cache that overlapswith the request.

end if
end if

end if

Fig 1. Storage system internal key components.

https://doi.org/10.1371/journal.pone.0174375.g001
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On the other hand, its effectiveness is expected to depend largely on the choice of p and c.

Our preliminary study using a trace-driven simulation methodology shows that the proper

choice of p and c is important for the above algorithm to perform well. First, we examine the

algorithm theoretically before analyzing the initial experimental results.

The average number of trials needed to make an LBA “hot” is, given p, follows the geometric
distribution:

pþ 2 � ð1 � pÞ � pþ 3 � ð1 � pÞ2 � pþ . . .

¼
X1

i¼1

i � ð1 � pÞi� 1
� p

ð1Þ

The above series boils down to 1/p. That is, if p = 0.1, the expected number of trials is 10

before an LBA is considered hot. If p = 1, the first trial will declare the LBA to be hot. In turn,

in order to verity that hot data will usually have repeated access count of R on average, we can

set p to be simply 1/R. Likewise, we can compute the probability that a “cold” LBA, which has

K-th accesses, is not identified as “hot.” This probability is equivalent to one less the probability

of this address being declared hot within K trials. That is,

1 � ðpþ ð1 � pÞ � pþ ð1 � pÞ2 � pþ . . .

þð1 � pÞK� 1
�pÞ ¼ ð1 � pÞK

ð2Þ

When p = 0.1 and K = 3, the above probability is 0.729, adn when p = 0.05 and K = 3, the

above probability is 0.857. The above result implies that with a sufficiently small p, the proba-

bility of having cold data enter, and thus pollute, the cache is not high. In other words, cold

data are kept off the cache with a high probability of over 72% or 85% when p = 0.1 and

p = 0.05, respectively (when K = 3).

In summary, the proposed probability-based hot data classification algorithm is simple and

easy to implement. As long as there is a wide gap in the access frequencies between hot data

and cold data, the probability-based classifier with a small p will effectively distinguish them. If

it is important to quickly classify hot data, we need to have a reasonably large p. If preventing

cache pollution is important, we need to keep p small.

For comparison purposes, we introduced an off-line optimal cache-management algorithm.

Basically, replacement policies identify the block that will be used in the furthest future for a

better cache memory utilization. Belady’s off-line algorithm discards the information that will

not be needed for the longest time [10]. Even though off-line algorithms are the most efficient

cache-replacement algorithms, it is not able to adapt them in real systems because it is impossi-

ble to predict the future. We note that off-line algorithms are not for real implementation, and

are developed to expose insights about what the on-line ProCache algorithm can or cannot

achieve.

Our off-line algorithm is derived from the well-known Belady’s algorithm. We add the

notion of “bypass” to Belady’s algorithm: If the newly requested data will not be needed again

for a time longer than all the information already in the cache, we bypass the caching of this

data; otherwise, we follow Belady’s algorithm.

In the example shown in Table 1, we consider four successive requests for a given current

cache status. Each pair of numbers (such as (1,4)) represents (LBA,next), where LBA is the log-

ical block address of a request, and next is the logical time when the same address is next

requested in the future. In the first case, read (1,5). The request hits in the cache (LBA 1 is in

the cache) and the next access time of the cache entry is updated (from 4 to 5) based on the

next access time of the new request. In the second case, read (5,8). Then, the request misses in
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the cache. Moreover, because this request is a read, we do not cache the logical block in the

cache. Next, for the new request, write (1,6). There is a hit in the cache and the corresponding

cache entry is updated with the next new access time. Finally, the request write (5,8) misses in

the cache. Because this request is a write, we need to determine whether it should be inserted

into the cache. Using the original Belady’s algorithm, this request is inserted and the logical

address 4 is evicted because its next access time (7) is the largest of all that are in the cache. On

the other hand, if cache bypassing is enabled, the logical address 5 is not inserted into the

cache because its next access time (8) is larger than that of any address in the cache.

Note that in our off-line algorithm, we label each access in the trace with the next access

time information before we process the requests in sequence from the beginning according to

the method described above. As such, the off-line algorithm utilizes the knowledge about

future references to a given address.

4 Trace-driven analysis results

We used two traces for experiments, as summarized in Table 2. Traces were collected from a

working desktop PC using the Windows PerfMon facility. As shown in the table, traceS is

relatively short (a few days’ amount) and traceL is relatively long (at least a week’s amount).

The cumulative write count of traceL is shown in Fig 2. Please note that the cumulative

write count of traceS is very similar to that of traceL. Note that traceS is from a typical

office computer and traceL is from one that is for development. The main metric that we

used in this section is the write hit ratio, which is the ratio of the number of write transactions

that hit in the cache to the total number of write transactions.

4.1 Comparison of off-line and ProCache algorithms

Fig 3 shows the performance of the off-line algorithm (“off-line”) and the performance of the

ProCache algorithm (“on-line”) as we vary the number of warm-up iterations. Warm-up refers

to running the given trace through the algorithm to “warm up” the write cache. We consider

warm-up because the traces that we study correspond to only several days of storage traffic.

Then, we repeated warm-ups to artificially amplify the traffic. We did not measure the

Table 2. Basic characteristics of the two traces used in experiments.

Name traceS traceL

# transactions 334,135 6,803,769

Reads vs. Writes 64:36 47:53

Total write volume 10.5 GB 49.8 GB

https://doi.org/10.1371/journal.pone.0174375.t002

Table 1. An example showing the initial cache content and how a new request changes the cache

content.

Cache content {(1,4), (2,5), (3,1), (4,7) }

New request corresponding action

Read (1,5) read hit; update (1,4) to (1,5)

Read (5,8) read miss; cache is NOT updated

Write (1,6) write hit; update (1,5) to (1,6)

Write (5,8) write miss; if no-bypassing,

evict (4,7) and insert (5,8);

if bypassing, bypass (5,8)

https://doi.org/10.1371/journal.pone.0174375.t001
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Fig 2. Cumulative write count.

https://doi.org/10.1371/journal.pone.0174375.g002

Fig 3. Off-line vs. ProCache algorithms. p = 0.5, c = 64 KB, (a) traceS, (b) traceL.

https://doi.org/10.1371/journal.pone.0174375.g003
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performance of the ProCache algorithm during the warm-up iterations. We studied the effect

of warm-up separately in Section 4.4, and we make several observations. ProCache is a write

cache as described in Section 3. To quantitatively evaluate the performance of the scheme, we

measure the cache hit ratio. The hit ratio is calculated by dividing the write hit count by the

number of requests, and is between 0*100%.

• The hit ratio of the off-line algorithm is high, from the smallest to the largest cache size that

we examined, and the difference between the smallest and the largest cache sizes was small.

This implies that the working set size is fairly small. The write hit ratio was as high as 80% or

higher.

• For all cache sizes, off-line performs better than the on-line algorithm. On-line approaches

off-line only when the cache is very large (4 GB), and we performed many (16 or more)

warm-up iterations. The result suggests that off-line places a fairly tight upper bound on the

on-line performance. Furthermore, if we observe the on-line performance for a long period

of time, the on-line performance (with a high p) will converge to that of the off-line if we have

a large cache. On the other hand, with a relatively small cache, the on-line algorithm does not

perform as well as off-line. It should be noted that the on-line algorithm makes a decision

regarding caching at the granularity of a request (constrained by c), whereas the off-line algo-

rithm keeps track of the access information with a 4-KB block granularity.

4.2 Effect of p

As was previously discussed, p is the main parameter employed in the probability-based hot

data classification algorithm. Fig 4 depicts the effect of p on the write hit ratio for both traces.

• In general, with respect to the examined metric (write hit ratio), a large p performed better

than a small p.

• The highest write hit ratio that was observed was about 38% (traceS) and nearly 70%

(traceL).

• The difference between the smallest and the largest p examined (0.1 and 1) increases with

the cache size for both traces. Interestingly, the gap is narrower with traceL than traceS.

Fig 4. Effect of p on write hit ratio: c = 64 KB. (a) traceS, (b) traceL.

https://doi.org/10.1371/journal.pone.0174375.g004
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We find that if we study for a much longer time span, a small p will perform fairly close to a

large p, especially when the cache size is small.

• Based on the result, if the available cache size is large, an interesting approach may be to use

a large p to capture the majority of the initial write data. Then, we adjust p as the cache occu-

pancy approaches 100%.

4.3 Effect of c

Fig 5 shows how the write hit ratio varies with the cache size and c.

• A large c does not perform as well as a small c if the cache is small. Conversely, a large c per-

forms better than a small c when the cache is large.

• With a large c, there appears to be more cache pollution (using large data). It has been

reported that large data are reused less than small data.

• The result reveals that c is an important parameter for traceS. However, the impact of c
becomes less significant with traceL, which is much longer than traceS. For traceL, p
appears to be more important than c (Figs 4 vs. 5).

• The result also suggests that the write hit ratio is determined primarily by small writes (32

KB or smaller) if one observes write traffic for a sufficiently long time (traceL).

4.4 Effect of warm-up

While our traces are non-trivial, they only correspond to disk usage for a few days. As such,

our trace-driven simulation method may not fully expose the characteristics of a cache-man-

agement scheme (as indirectly implied by the results in previous sections). In order to quantify

the potential limitation of the trace-driven simulation methodology, we studied the effect of

“warm-up” of the write cache by running the same trace multiple times before measuring the

result. The proposed experiments will artificially increase the number of writes. Fig 6 reports

four results: warmup-N has N warm-up runs before we perform the final measurement run.

We observe that:

Fig 5. Effect of c on write hit ratio: p = 0.5, (a) traceS, (b) traceL.

https://doi.org/10.1371/journal.pone.0174375.g005
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• With warm-up, the write hit ratio increases and the warm-up effect is more visible with a

large cache and when the trace is small. This result follows from the fact that repeated warm-

ups increase the number of writes seen by the cache, implying that the probability that write

data will be kept in the cache is higher.

• With many warm-ups (16 or 64), the write hit ratio becomes fairly high for traceS, and

this is partly because the write requests that occur for the first time in the trace may hit in the

cache (because the cache has been warmed up artificially).

• Warm-up has little effect for traceL because this long trace has many requests. Moreover,

with the high probability considered in the experiment (p = 0.5), there is a high feasibility

that most repeated writes are all cached.

• Our result suggests that we should be extremely careful when using a relatively short trace to

study the behavior of a storage device. Still, the benefit of using traces is that we can perform

deterministic experiments.

5 Experimental results using real workload

5.1 Setup and workload

The above-mentioned results motivate us to develop a new on-line emulation infrastructure.

This infrastructure is expected to help us overcome a few shortcomings of the existing trace-

driven simulation approach. With trace-driven simulation, it is hard to predict the actual exe-

cution time because the interaction of the SSD performance and the system behavior is not

captured (i.e., the system condition is different between the time when the trace is collected

and when the trace drives the simulation). In addition, trace lengths are typically small in

order to conserve the storage space to keep the traces. Lastly, the storage content (e.g., the

amount of data that we have at the time of simulation, and the location of the file system meta-

data) is typically not modeled. The proposed infrastructure is different from the trace-driven

simulation method, and is potentially more powerful because:

Fig 6. Effect of warm-up on write hit ratio: p = 0.5 c = 64 KB, (a) traceS, (b) traceL.

https://doi.org/10.1371/journal.pone.0174375.g006
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• It emulates the internal components of the target SSD device while the system runs real

workloads;

• Using powerful processors and high-bandwidth main memory in modern commodity PCs,

we can model not only the FTL activities but also incorporate realistic timings of key events

(e.g., erase operation and channel contention); and

• It becomes possible to create a snapshot of the storage content so that we can repeat emula-

tions predictably under real workloads.

• For a fair and fast comparison, we may emulate many different SSD configurations (e.g.,dif-

ferent cache sizes) simultaneously without having to consider the repeatability of the study.

The new on-line emulation infrastructure allows us to run significantly longer and larger

workloads (compared to the trace-driven simulator we developed), and it increases the pro-

ductivity and reliability of the experiments. Furthermore, it will help us determine the effect of

the run-time performance of the on-line algorithm. The trace-driven simulation methodology

is limited, and cannot accurately predict the performance impact of the internal working of

the SSD on the overall system performance.

We have built our emulation infrastructure on a real hardware system with a dual-socket

server having two quad-core Xeon (E5620) and 192 GB of DDR3 DRAM capacity. This large

memory capacity allows us to model a realistic SSD device larger than 160 GB, and to employ

large realistic workloads that combine the OS and multiple co-scheduled applications.

To the system, our proposed emulation environment is a completely functional SSD storage

device, as shown in Fig 7a. It is a driver running in the kernel space that provides a pseudo

block device to the host. The environment is a pure software driver, therefore no other hard-

ware is required. Accordingly, the system cannot distinguish our emulated device from a phys-

ical device. This implies that with proper virtualization software, we can run workloads on a

Linux or Windows (or any other OS supported by the virtualization technology of choice)

guest with no modification to the OS itself.

It internally emulates the SSD controller, bus, bus controller, and flash chips, and allows the

user to configure the parameters of each component. Specifically, it enables the user to config-

ure the size of the command queue, type of FTL (page, block, and hybrid), number of buses,

bus speed, bus controller delay, and various parameters for each flash memory chip including

the page size, spare area size, number of pages per block, number of blocks per chip, number of

chips, and read/write/erase operation overhead [11–13].

At the same time, the timing behavior of the target SSD device is controlled by user-defined

parameters, thus giving us emulation capabilities. The emulated SSD controller, bus controller,

and each flash memory chip are emulated separately by using the concept of the state machine.

Fig 7b shows an example of the operation timing diagram for the write operation. In this

example, assume that the emulator has eight command queue buffers, two local buses, and two

chips per bus.

When the emulator receives a write command from a host, the request is queued in the

command buffer, and is serviced in a first-in first-out (FIFO) manner when the status of the

SSD controller module becomes Ready. Then, it changes the controller’s status to Waiting, and

copies actual data to the SSD controller module, where the controller executes the FTL func-

tion during the Waiting state. After that, the controller’s status becomes Operating, and it cop-

ies the data to the appropriate local bus when the local bus’s status is Ready. Before changing

each component’s status, we artificially emulate the timing overhead as designated by the user.

For the experiments, we set the SSD emulator geometry related parameters, as shown in

Table 3, and we used flash memory timing parameters based on a typical TLC flash memory
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chip specification. Then, we implemented our ProCache into an SSD emulator. The current

implementation of ProCache uses a simple LRU-replacement policy. It means that ProCache

uses the probability based cache-entrance policy and LRU based cache replacement policy.

The LRU policy and its variants base their replacement decision on the age of the references,

while the LFU policy and its variants base their decision on the frequency of occurrence of the

references [14]. However, note that the use of different replacement policies does not signifi-

cantly affect the result because of the characteristics of ProCache. We used the Ext4 file system

with a 1-KB block size, which is the default block size.

To compare the performance using a realistic workload, we defined a set of common

works, as shown in Algorithm 2, which reflects (a little bit heavy) daily common computer

Table 3. SSD emulator parameters.

Parameter value

Page size 2KB

Pages per block 128

Blocks per chip 4096

Number of chips 32

Number of buses 4

Number of channels 4

R/W/E latency 20us/200us/1.5ms

https://doi.org/10.1371/journal.pone.0174375.t003

Fig 7. SSD emulator. (a) SSD emulator internal architecture, (b) Example of operation timing diagram for write operation.

https://doi.org/10.1371/journal.pone.0174375.g007
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usage pattern. The workload that we used for the experiment consists of four steps. First, we

copied the Linux kernel sources from the original directory to a new directory, and we com-

piled those kernel sources using multiple threads; specifically, we ran 16 threads simulta-

neously. The storage occupancy of this work is around 6.3 GB. Then, we cleaned the source

tree. Secondly, we copied two DVDs and one CD file to a new directory four times. To do this

task, we required about 25.2 GB of storage space. Third, we downloaded 2,000 web pages to a

local directory. This step required a storage space of about 130 MB. Finally, we removed the

newly created DVDs, CDs, and web pages. This workload shows various potential write pat-

terns, that is, a mixed-size random pattern for the first step, a long sequential pattern for the

second step, and a short sequential pattern for the third step.

Algorithm 2 Test workload.

for i = 0; i < N; i++ do
Kernelsourcecopy and kernelcompile(* 6.3GB)and clean
4 x 2 DVDs and 4 x 1 CD copy (* 25.2GB)
2,000web pages download(* 130MB)
rm -rf DVD/ CD/ webpages

end for

5.2 Deciding c, p and cache size

We first have to determine three parameters, namely c, p, and the cache size. To determine the

appropriate values, we measured the hit ratio of each configuration when the workload shown

in Algorithm 2 is executed. Both Figs 8 and 9 show the variation in the hit ratios as we varied c,

p, and the cache size. In Fig 8, we considered only the requests that were the same or less than

the cut-off size for calculating the hit rate, while we considered all requests for Fig 9.

The results obtained from a real workload on a real machine confirmed our findings of

trace-driven studies.

• For the small c (1 KB and 4 KB), a small p exhibits a better performance for a small cache

size, but a large p is appropriate for the larger cache size.

• For the large c (8 KB and 16 KB), a large p is suitable.

• In the case of a ‘hit’, the data from the cache are used for requests whose size is larger than c.

Therefore, the hit ratio values of Fig 8 are very high.

• The use of 16 KB for c is somewhat large for a real workload.

• The highest hit rate value was obtained when c = 8 KB, p = 0.1, and the cache size is 1 GB.

Although the hit rate is less than 4% when we consider all of the requests, our cut-off idea

significantly affects the performance of the storage system because

• The storage system performance is significantly affected by small random writes [15, 16].

• The metadata update of file systems incurs frequent synchronous small write operations,

which exhibits extremely hot behavior. For our workload, 24.6% of the total requests were

issued by only 1.5% of the small write volume, which was also observed in [17, 18].

• It is extremely important to reduce the number of small write operations, especially in flash

memory-based storage systems because of their merge operation overhead [19].

As expected, if there is more cache memory, there may be a greater performance gain. Fur-

thermore, there is a direct correlation between the effectiveness of the proposed idea and the
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parameters, and the performance of the idea is highly dependent on workloads. However, we

need to choose a reasonable cache size. As a result, for the performance comparison experi-

ments, we set c as 8 KB, p as 0.1, and the cache memory size as 1 GB, which will be described

in the next section.

5.3 Performance comparisons

In this subsection, we compare our proposed ProCache with the reference counting scheme

proposed by Hsieh et al. [6]. The reference counting scheme maintains a saturating counter

for each logical block number to be tracked. For comparison purposes, we implemented the

pure LRU scheme (denoted as BASE), and the reference counting scheme (denoted as

REFCNT) The detailed algorithm used to implement the reference counting scheme is shown

in Algorithm 3.

Algorithm 3 Reference counting scheme.

Initiallyall Cn have a value 0
Everyonce in a while (afterphysicalor logicaltime t), decay all Cn (e.g.,
shiftright)
For each write
if Ci < thresholdthen

Fig 8. Measured hit ratio when considering only requests that are the same as or less than the cut-off size (warmup-6). (a) c = 1KB,

(b) c = 4KB, (c) c = 8KB, (d) c = 16KB.

https://doi.org/10.1371/journal.pone.0174375.g008
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IncrementCi
Writeinto flashmemory

else
Writeinto an NVM cache

end if

For the comparison, we set the SSD emulator parameters for cache memory to be the same

as that of the SLC flash memory, while we used the TLC flash memory parameters for the

remainder of the main storage area. For both the ProCache and reference counting scheme,

we set the cache size as 1 GB and the main flash memory storage size as 32 GB, and for the

baseline, we used 33 GB of flash memory.

We first measured the elapsed time for executing the workload described in Algorithm 2.

Fig 10 shows the performance results of the baseline, reference counting scheme, and our pro-

posed ProCache.

ProCache provides up to 16.15% (7.57% on average), better performance than the baseline

owing to its efficient cache-management mechanism. In particular, it provides notable perfor-

mance for workloads that have small random write behaviors, including kernel source com-

pile, clean, and web page downloads. As expected, it is clear that there is no or worse

performance gain for the file copy workload because it has a very long sequential cold write

pattern. This means that we can further enhance the performance if we can carefully bypass

such a long sequential write pattern.

Fig 9. Measured hit ratio when considering all requests (k = 6). (a) c = 1KB, (b) c = 4KB, (c) c = 8KB, (d) c = 16KB.

https://doi.org/10.1371/journal.pone.0174375.g009
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ProCache exhibits a slightly better performance than the reference counting scheme (1.97%

on average). Note that the reference counting scheme requires significant RAM space, while

ProCache does not. Specifically, the naive reference counting scheme requires 1B for each

512-B block. Therefore, a 512-GB drive requires a RAM overhead of *1-GB. The bloom filter

can reduce this overhead at the cost of an increased number of memory accesses and false pos-

itives. It is very important to reduce the RAM space requirements when applying the proposed

techniques to real-world consumer electronics.

Fig 11 shows the results of write and erase count comparison between ProCache and the

reference count scheme. Both schemes efficiently decrease the number of write and erase oper-

ations, which directly affects the lifetime and performance of the flash memory-based storage

system. Specifically, ProCache decreases the number of write and erase operations by 19.3%

and 14.0%, respectively. These results explain the reason for which ProCache shows a slightly

better performance than reference counting.

6 Conclusions

We proposed a simple probability-based hot write data caching scheme. It is simple to realize

the proposed scheme owing to its low overhead in terms of RAM usage and computation. The

proposed scheme was shown to achieve fairly robust effectiveness at a fraction of the imple-

mentation cost needed for other techniques. We first evaluated the scheme using trace-driven

simulations. Then, we quantitatively characterized the effect of c, p, and the cache size. Based

on the realistic SSD emulation environment on a live system, we showed the results of the per-

formance comparison. ProCache exhibits a performance that is up to 16.15%, which is on

Fig 10. Performance comparison.

https://doi.org/10.1371/journal.pone.0174375.g010
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average 7.57% better performance, and it efficiently decreases the number of write and erase

operations by 19.31% and 13.99%, respectively.

Based on actual experiments, this paper makes the following contributions:

• Determination of c: The main factor is the cache size; if the cache is small, keep c small; oth-

erwise, a reasonably large c will suffice.

• Determination of p: An important factor is the total writable volume to the cache (c also

affects this). A small p of 0.1 appears to be suitable when c is 8 KB; a larger p of 0.2*0.4

appears to be suitable when c is smaller.

• We found that an SSD emulator with virtualization software support is very useful for the

analysis of the internal and external structure of future SSDs. It is very easy to emulate multi-

ple platforms with many configurations simultaneously, and this enables us to closely exam-

ine the traffic of systems in a simple manner.

We envision two potential directions for future research. First, we will explore the combina-

tion of p and c. For example, p = P[logs], where P has a decreasing density. Therefore, we can

use a different p for a different write size (s). Second, we will consider dynamically adjusting p
and c. When the replacement rate is high, it may be that p is too high and c should be

decreased.
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